Determination of Electron-Microscope Parameters using a Neural Net
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Off-Axis-Electron-Holography [1] has proven a powerful tool in high-resolution electron
microscopy, because it supplies the information for after the fact aberration correction by
computer.

The process of image generation in electron optics can be described by mean of the complex
wave transfer function exp(iy(g§)) in Fourier space. The object wave o(F) = a(F)e™"”, in
Fourier space described by O(§) = FT(e(F)), with space frequency g and FT the Fourier
transformation, is distorted in the image plane. The image wave originates from

B(g§) = e™P0(§) resulting in the real space ifnage wave b(7¥) = FT'(B(g)). In electron
holography, the complex image wave b(r) is available, therefore, the object wave can be
reconstructed if the wave transfer function is known.

There are different ways to find the transfer function. In crystalline specimens, the method of
analysing crystal reflections [2] looks promising to find the coefficents of the transfer
function. In the case of an amorphous and thin specimen, the analysis of the diffractogram is
well established [3]. If the assumption of weak phase objects holds, the intensity distribution
1,(g) in the diffractogram is described by

1,(§)=sin*(x(@)).

There are some well known techniques [4] to detect the parameters of the transfer function by
analysing the intensity. The pitfall is that none of this processes uses all the information -
available in the diffractogram, and therefore, the optimum precision is not reached.

We investigated the application of neural networks to determine the wave transfer function,
To concentrate the information, the intensity of the diffractogram is projected into the space
S = span(§,...S,), with the basis vectors 5 (q) (fig. 1) and the scalar product

(A.B)=] ™ A@)B(q)dg.

The resulting scalar products P. = <Ir ,,S,.) contain most of the information in the diffractogram
and are used as input in a fed-foreward neural net.

During training of the network, simulated diffractograms resulting from well known transfer
functions are projected on S and fed to the net. The a-priori known result is fed back to the
used backpropagation neural network to train the interconnections of the neurons. After some
thousand training cycles, the net responds to the input signal in the correct way.

We trained the net with a defocus D, in the range D, € {160...180nm} and a spherical
aberration C, in the range C, € {1.5...1.6mm} . After training, we tested the output of the net
with new simulated diffractograms, not part of the trainingset. The difference between output



of the net and simulation parameter C,, is plotted over the absolute value of D, and C, of the
input. The resulting error is shown in figure 2. In the central region, the error in C, is below

10um . At the border of the training area, the error is larger due to the typical fact in neural net
behaviour that they are good for interpolation but worse in extrapolation.

Fig. 1: Basis system for analysis of diffractograms. The set of 20 basisvectors was used as a
mathematical coordinate system to reduce the input space of the neural network
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Fig. 2: The error of the neural net determining spherical aberration. In the center of training
the error surface is nearly flat and with an error below 0.01mm.
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